Top K frequent elements [Quick Select, Heap, Bucket Sort]¶
Time: O(N); Space: O(N); medium
Given a non-empty array of integers, return the k most frequent elements.
Example 1:
Input: nums = [1, 1, 1, 2, 2, 3], k = 2
Output: [1, 2]
Notes:
You may assume k is always valid, 1 <= k <= number of unique elements.
Your algorithm’s time complexity must be better than O(NLogN), where N is the array’s size.
1. Bucket Sort Solution¶
[3]:
import collections
class Solution1(object):
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
counts = collections.Counter(nums)
buckets = [[] for _ in range(len(nums)+1)]
for i, count in counts.items():
buckets[count].append(i)
result = []
for i in reversed(range(len(buckets))):
for j in range(len(buckets[i])):
result.append(buckets[i][j])
if len(result) == k:
return result
return result
[4]:
s = Solution1()
nums = [1,1,1,2,2,3]
k = 2
assert s.topKFrequent(nums, k) == [1, 2]
2. Quick Select Solution¶
[5]:
import collections
from random import randint
class Solution2(object):
"""
Time: O(N) ~ O(N^2), O(N) on average
Space: O(N)
"""
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
counts = collections.Counter(nums)
p = []
for key, val in counts.items():
p.append((-val, key))
self.kthElement(p, k);
result = []
for i in range(k):
result.append(p[i][1])
return result
def kthElement(self, nums, k):
def PartitionAroundPivot(left, right, pivot_idx, nums):
pivot_value = nums[pivot_idx]
new_pivot_idx = left
nums[pivot_idx], nums[right] = nums[right], nums[pivot_idx]
for i in range(left, right):
if nums[i] < pivot_value:
nums[i], nums[new_pivot_idx] = nums[new_pivot_idx], nums[i]
new_pivot_idx += 1
nums[right], nums[new_pivot_idx] = nums[new_pivot_idx], nums[right]
return new_pivot_idx
left, right = 0, len(nums) - 1
while left <= right:
pivot_idx = randint(left, right)
new_pivot_idx = PartitionAroundPivot(left, right, pivot_idx, nums)
if new_pivot_idx == k - 1:
return
elif new_pivot_idx > k - 1:
right = new_pivot_idx - 1
else: # new_pivot_idx < k - 1.
left = new_pivot_idx + 1
[6]:
s = Solution2()
nums = [1,1,1,2,2,3]
k = 2
assert s.topKFrequent(nums, k) == [1, 2]
[7]:
import collections
class Solution3(object):
"""
Time: O(Nlogk)
Space: O(N)
"""
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
return [key for key, _ in collections.Counter(nums).most_common(k)]
[8]:
s = Solution3()
nums = [1,1,1,2,2,3]
k = 2
assert s.topKFrequent(nums, k) == [1, 2]
[9]:
class Solution4(object):
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
counts = {}
for num in nums:
if num not in counts:
counts[num] = 0
counts[num] += 1
counts = [k_v for k_v in counts.items()]
counts.sort(key=lambda x: x[1], reverse=True)
return [counts[i][0] for i in range(k)]
[10]:
s = Solution4()
nums = [1,1,1,2,2,3]
k = 2
assert s.topKFrequent(nums, k) == [1, 2]